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Abstract. In this paper is described a model of residential mobility, built to simulate individual
households, their perception of and reaction to varying conditions across different scales of inter-
action, and their movements to occupy housing in a physical, social, and economic environment. The
methodology underpinning the model is based on an automata core, which leverages the advantages it
offers in terms of representing individual entities and their rule-based interactions. This methodology
is extended, however, to incorporate geography-specific functionality, with advantages for the model-
ing of human systems. The applicability of the methodology is demonstrated through the development
of a rich model of residential mobility, in which individual households interact with other households
and real-estate infrastructure, dynamically in space and time, to form synthetic communities and
artificial property submarkets. Use of the model for what-if experimentation is demonstrated with
synthetic economic and sociodemographic simulation scenarios.

1 Introduction

Research relating to residential mobility abounds (for an overview, see Clark, 1982a;
Wu and Li, 2004) and work in this area has explored many facets of mobility. Topics
that have been addressed include the reasons for relocation (Rossi, 1955; Wolpert, 1965;
1966), the process of housing search (Clark and Flowerdew, 1982), the various ways
in which households evaluate properties (Speare et al, 1975), and wider-scale dynamics
of property markets and submarkets (DiPasquale and Wheaton, 1996), to identify but
a few. Modeling and simulation are integral to much of this work and a variety of
modeling methodologies have been employed in these endeavors (see Clark, 1982b;
Clark and Flowerdew, 1982).

In recent years cellular automata (CA) and agent automata have been employed in
the modeling of residential dynamics, with success (Benenson and Torrens, 2004).
Though they offer significant advantages for urban simulation, much room remains
for advancing the methodology in social-science contexts (Epstein, 1999); this is partic-
ularly true with respect to human systems, for which agency is of relevance. In this
paper I argue that a modeling scheme based on geographic automata (GA) can further
extend the success of the automata approach and can offer several advantages for
studying residential mobility through modeling and simulation. My argument is
supported with demonstration of the methodology, and discussion of its use in the
building of a model of residential mobility and application in simulation scenarios.

The paper is organized as follows. In section 2 the topic of modeling residential
mobility with automata tools is introduced, and a justification and methodology for
building GA is described. Following this, the use of the methodology to build a model
of residential mobility is detailed in section 3. Experimentation with this model is
described in section 4, in the context of exploring residential location scenarios, ahead
of concluding remarks in section 5.
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2 Methodology

The methodology used to build the residential mobility model relies on an automata
core, extended to accommodate geographic concerns. The resulting GA inherit
modeling schemes from other automata-based methods, but add additional distinct
functionality.

2.1 Automata, cells, and agents

Automata are processing devices, capable of holding state variables and altering those
states on the basis of internal transition functions, and they are endowed with the
ability to input and respond to state information from other automata devices. Taken
together, collections of automata may be designed to interact in a massively parallel
context to perform some collective action or to evolve in a system setting. Two classes
of automata are popularly used in urban research: CA and agent automata. Later,
I will argue in favor of a third class of automata tool, GA, which I believe to offer
advantages in modeling residential mobility.

Basic automata (4) such as Turing machines and finite state machines (Sipper,
1997) are usually specified with state variables (S) to express automata conditions at
specific points in time (7), and rules (Ry) that govern transitions between and to those
states as time progresses; the rules are formulated as functions that accept state
information input (/) from other automata. The state—rule—input combination may
take on spatial form, with connections representing spatial interaction possibilities,
and almost always involves some temporal treatment:

A~ (S,Rs.I); Rg:S, — S,.,. (1)

CA (Ac in formula (2) below) are an extension to this basic idea, adding cells as a
bounding mechanism within which an automaton exists discretely. This simple addition
extends the processing abilities of automata significantly; state information exchange
between CA is considered within the context of neighborhoods (&), which may be
formulated as a local area of influence within a lattice of connected CA.

Ac ~ (S,Rg,Iy); Rg:S, — S, . 2)

CA may be thought of as pixels on a television screen, each pixel being endowed with
the ability to change states independently and exchange that information with adjacent
pixels by diffusion. A dynamic picture emerges as the pixels interact through this
diffusion, observable to the onlooker.

Agent automata are also capable of processing information and of exchanging it
with other agent automata. Different agent automata methodologies rely on this
general scheme, ranging from individual-based models to agent-based models and
multiagent systems (Box, 2001; Ferber, 1999; Kohler and Gumerman, 2001; Russell
and Norvig, 1995; Stefansson, 1997; Tesfatsion, 2002; Woolridge and Jennings, 1995).
Agent automata differ from CA cells in several respects, but predominantly the differ-
ence is one of interpretation; inspiration for agents comes from the study of humans,
from artificial intelligence research for the most part. The characteristics and rules
used to design agents usually refer to behavior. Agents are commonly specified in a
heterogeneous fashion, and are endowed with proactive and goal-oriented behavior,
perception, communication skills, the ability to adapt and retain memory of their
actions, and functionality to allow them to evolve through space and time.

2.2 Geographic automata

There is room to extend the automata concept even further, however. This is partic-
ularly salient with respect to geographic functionality. I argue in favor of a fourth genre
of automata to complement basic automata, CA, and agent automata—GA—and
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my contention is that GA better lend themselves to the simulation of geographic
dynamics. The computational scheme for GA, their formulation in software as GA
systems, and their methodological foundation in geographic information science and
complex adaptive systems are described elsewhere (Torrens and Benenson, 2005). I focus
on their relevance to modeling residential mobility in this paper, and the advantages
that they offer in that context.

Essentially, what I am doing, in devising GA, is stripping the automata method-
ology to its basic foundation. GA are considered as a tool for representing entities and
their characteristics as dynamic processing devices, first and foremost. The method-
ology is built from this foundation, with geography as the main consideration. GA can
accommodate CA as well as agent automata functionality. In addition, GA may serve as
a mechanism for uniting the two approaches, and also may offer distinct functionality
in their own right.

The general scheme for a geographic automaton G is specified as follows:

G ~ (KDSaR‘S‘aRLaLDINaRN)y

RS : SI - S1+I s
R, L — L,
Ry:N, — N, . (3)

GA retain state (.S), input (/), and state transition rules (Ry) of general automata, CA,
and agent automata. Additional functionality is added, however.

(a) Ontology of GA entities (K)—the ontology is based on fixture in space and time.
Fixed GA act in a CA-like manner; nonfixed GA are more akin to agent automata.
GA can combine both space—time fixture and nonfixture, however.

(b) Movement rules (R,)—GA are endowed with the ability to move through the
spaces in which they reside, progressing through space using any form of movement.
A dedicated movement rule governs this behavior, independent of general state
transition rules.

(c) Georeferencing conventions (L)—a flexible framework for expressing locations of
modeled entities in space and time allows GA to be registered to (fixed and nonfixed)
settings in which they may be situated. This referencing may take on any form—for
example, on the basis of local action, action at a distance, direct, and indirect relation-
ships in space and time—and may be conveniently derived from geographic information
systems (GIS) and science.

(d) Neighborhood rules (R,)—dynamically configurable and heterogeneous neigh-
borhood transition rules are added, thereby allowing for the flexible definition of
relationships between automata. Again, these rules are independent of state transition
rules and not only do they allow for elastic, asymmetric, and action-at-a-distance
neighborhoods, but the neighborhood itself may be tied to other conditions (and rules)
in a model in such a way that the neighborhood, and the rules that drive its formation,
may vary over space and time.

2.2.1 GA as a distinct automata-based simulation tool

The additional functionality that GA offer over other automata tools has advantages
for the modeling of residential mobility. The ontology of GA entities, based on fixture
in space and time, is basic but important, as it supports a fundamental distinction
between mobile entities (migrating households, socioeconomic and ethnic groups) and
fixed objects (real estate, property submarkets, cities), but also permits both to coexist
and interact in space (a social space, an economic space, a demographic space, a
search space, etc). This has important implications for the representation of residential
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systems, in which human-human and human-environment interactions are of
paramount importance. Mobile and fixed households interact with each other and
between and within fixed properties. These interactions are distinct, with fundamentally
different behavior and considerations for humans and their buildings.

CA are good at handling infrastructure, in which state conditions are influenced in
a dispersive fashion—urban blight gradually rippling from house to house on a street
as depreciation in the visual character of neighboring houses influences the general feel
of the street, and thus the sales price of other houses. Agent automata are good
at handling humans, and in particular their decision and choice rules. However, the
phenomena also exist in a symbiotic relationship that cannot be adequately captured
under a solely cellular-based or agent-based approach. Moreover, space is often an
essential unifying and explanatory mechanism.

GA are based on an automata core, and share some characteristics with basic
automata, cellular automata, and agent automata. The addition of geography is
distinct, however, and has important implications for modeling residential mobility.
It is worth discussing these distinctions before describing the use of the methodology
for modeling residential mobility scenarios.

2.2.2 The methodological importance of geography

The main distinction between GA and CA or agent automata is the addition of
geography to the general automata scheme. CA and agent automata are already
endowed with geographic properties (lattice position, neighborhoods, state transition
mediated through neighborhood input, and movement, in the case of mobile agent
models). GA build upon these schemes, and allow for a greater degree of flexibility in
the representation of geography. Delineation of GA does not need to be restricted to
cell pixels and interaction is not necessarily limited to a neighborhood window.
Similarly, GA may be agent based or not, or may offer attributes of both specifica-
tions within the same model. The GA framework is not restricted to a cellular-based
or agent-based view of the world, but can become so if required. The explicit and
flexible treatment of geography is particularly important in representing residential
mobility.

GA allow for the representation of a variety of spatial structures. GA can exist in
a spatial environment or not. They may be defined in a cellular fashion. These autom-
ata may take on a regular or irregular form, and taken together they may exist in a
tessellated space, a network space, or in a spatial field. They might also be nonspatial,
but designed to become spatial if and when necessary.

A variety of spatial processes may be accommodated: random perturbation of
automata states in diverse locations within a lattice structure, true movement in a
vector space, local-scale diffusion within a neighborhood of influence, action at
a distance by direct and indirect means, or inertia. The process may be based on
interaction in space or time or not. These processes might operate between fixed
automata, between mobile automata, or between both.

GA may be global and local, or may be designed to operate in space and time
across scales. This permits action at a distance or action at close proximity, both in
space and time, and considered in direct and indirect contexts.

In addition, GA hold other advantages. They relate well, on an operational level, to
object-oriented paradigms for building modeling software; they also interface relatively
seamlessly with raster-based and vector-based GIS. Similarly, relationship conventions
match well with object-oriented database-management systems and entity-relationship
models (Benenson and Torrens, 2005; Benenson et al, 2005; Torrens and Benenson,
2005). Moreover, GA relate closely to complex adaptive systems in the consideration
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of their interactive dynamics. The flexibility of the approach allows for the nesting of
entities and their relationships across scales, and facilitates the emergence of novel
spatial ensembles across those boundaries (Torrens and Benenson, 2005).

2.2.3 GA versus CA and agent automata

The use of CA in residential-mobility modeling follows pioneering work by Sakoda
and Schelling in the 1970s (Sakoda, 1971; Schelling, 1978), who modeled sociospatial
segregation in residential location behavior with the use of basic checkerboard models.
CA models of local-scale relocation have also been developed by Batty (2001) and
Schweitzer (2003). O’Sullivan’s (2002) CA model of gentrification is also relevant.
Several agent-based models of residential location behavior have also been built.
Agents have been used in this context to construct multiagent systems composed of
relocating households. Their behavior has been formulated on the basis of cultural and
cognitive dissonance among individual households and the resulting patterns of segre-
gation they influence. The simulations have been used to explore scenarios for the
sociospatial segregation of diverse groups in Israeli cities (Benenson, 1998; Benenson
et al, 2002), and to examine the properties of complex adaptive systems in those
cities (Portugali et al, 1994; 1997). These CA and agent models may be differentiated
from GA in a number of ways, considering the definition of cell geography, states,
state transition rules, representation of agency, georeferencing, neighborhoods, and
movement.

Cell geography is commonly defined in an arbitrary manner, as a function of the
methodology rather than theory, in CA models of residential dynamics. Cells are pixel-
like, same sized, and uniform in spatial configuration, for example, in models by
Sakoda (1971) and Schelling (1969; 1971; 1974; 1978). The models are formed in a basic
checkerboard fashion, without consideration of real urban land parcels. The same is
true of other CA models developed by Batty (2001) and Schweitzer (2003). These
models were designed to function as simply as possible, however, and work very well
pedagogically. O’Sullivan’s (2002) graph-based CA models of gentrification character-
ize cells in terms of network nodes, whereas the residential CA models of Benenson
and colleagues (2002) represent cells as irregular polygons. The GA scheme accom-
modates each of these forms of cellular geography. It requires only that entities be
represented as automata and is indifferent to their geography. In addition, automata
may be specified on the basis of entity-relationship schemes (Torrens and Benenson,
2005), following the entity-relationship model (Peckham et al, 1995).

CA models of residential dynamics have also treated cell-state characteristics
simply, with households represented as simple black-and-white states with a binary
contentment state, for example, in the Sakoda (1971) and Schelling (1969; 1971; 1974;
1978) schemes. The intention, in those models, is to abstract characteristics of house-
holds that might help to explain sociospatial segregation. There is no distinction
between households and properties. O’Sullivan’s (2002) work on gentrification does
make this distinction; cells are used to simultaneously hold state characteristics for
households and their homes in his example. These states are still mapped to the cell,
however. GA may also accommodate those state schemes. Indeed, they have been
found to be compatible with all urban automata models published in the literature
(for a detailed list and description, see Torrens and Benenson, 2005). The advantage of
GA, with respect to state descriptors, lies in the relationship between GA states and
the other unique properties of the methodology—ontology, movement, neighborhood
rules, and georeferencing. States can thus be expressed and interpreted explicitly
through geography. For example, states of a household can be clearly distinguished
from those of a home. Moreover, the set of those state descriptors for individual
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household members may take on heterogeneous form on an independent basis, or as
they move through space and time relative to other simulated entities and objects.

Transition rules in CA models of residential mobility relate to state change. These
are formulated in a variety of ways. Segregation models tend to incorporate rules
designed on the basis of factors that alter a household contentment state in a cell, on
the basis of the proportion of various social and ethnic mixes in a fixed neighborhood
of cells around a cellular automaton, with this used as the input to a tolerance
calculation. Other CA models rely on a rent-gap calculation as a transition rule
(O’Sullivan, 2002). GA provide the means for connecting cell-like state transition
with agent-like state transition, intuitively, through geographic considerations. As
automata-based householders’ income grows, for example, they may make capital
improvements in their home. Deterioration in the condition of a neighboring structure,
or an alteration in its land use, may prompt an increase in the dissatisfaction of a
household that resides next door.

Representation of agency is quite cursory in many CA models of residential
dynamics. Relationships between cell-based households are expressed in terms of
contentment regarding collocation in local spaces in segregation models (Sakoda,
1971; Schelling, 1971). Once again, these models are designed to be simple. Recently,
agent-based models based on cognitive dissonance have been developed by Benenson
and colleagues, which provide a richer representation of agency, formulated on agent
utility regarding the social and economic environment around them. The advantage of
the GA approach lies in its ability to interpret agency through geography. GA can
be made to focus on the exercising and differential application of decision and
choice rules as a function of movement and varying conditions encountered in diverse
geographies. This is particularly important in residential contexts—for example, in
housing-search behavior.

CA models are incapable of representing frue movement. Cells are fixed in a lattice.
Unlike households, they do not uproot and move. Movement rules are absent in CA.
The only form of movement that may take place does so by proxy means; state
information is exchanged within a fixed neighborhood. In this sense states can diffuse
through the system, iteration by iteration. However, action at distance (such as migra-
tion) is not easily facilitated in CA (Batty, 1997). Similarly, true vector motion with
associated directions and velocities is also not possible in a CA context; this can be
mimicked, as with Game-of-Life gliders (Gardner, 1970; 1971), through state exchange,
but the movement is a function of the visual interpretation of graphic output of the
models in these cases (Faith, 1998), rather than truly simulating movement or migra-
tion as we would understand it to operate in the real world. CA models get around this
problem by representing movement in a proxy fashion. CA cells are randomly switched
on or off in the Sakoda and Schelling models, and are activated with state conditions
of black or white, content or malcontent, within a lattice of such cells. This gives the
illusion of migration, with the result that cells are made to form globally distinct spatial
patterns of segregation under simulation (figure 1). A similar mechanism is employed
in graph-based CA. Agent automata do support movement, and there are many
examples in the pedestrian and vehicle traffic literature (Torrens, 2005). Batty (2001)
and Schweitzer (2003) have built agent-based models of city-scale residential mobility,
with a focus on the movement of agents as particles under the influence of attraction
surfaces, with that attraction determined by agglomeration factors. As mentioned, GA
come equipped with dedicated movement rules, which are used to animate GA through
locations. These rules are distinct from state transition rules and are designed to
accommodate a rich range of movements relevant to residential location behavior:
how households navigate, search, stay put, and are mobilized in modeled spaces.
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Figure 1. Automata implementation of the Schelling model, run with varying parameters:
(a) 8000 households with 10% tolerance, (b) 8000 households with 30% tolerance, (c) 8000 house-
holds with 40% tolerance. (Agents are black or gray; free space is white; ¢ denotes the number of
iterations of the simulation.)

A range of residential-relevant movements can thus be represented, including entry
and exit from property markets, housing-search behavior, the moving in and moving
out of individual properties, geographical inertia, and migration dynamics.

Georeferencing in CA models relates to the positioning of cells in a regular, static,
and uniform lattice structure. Referencing is accomplished by direct means alone.
Cells and neighborhoods of adjacency are referenced to fixed cells. Georeferencing is
extended in the GA methodology, and incorporates these conventions, but also allows
for the expression of location conventions for automata relative to other automata or
objects in space and time. Both direct and indirect georeferencing is accommodated.
Direct georeferencing ties automata to a particular place at a particular time. Indirect
georeferencing conventions relate automata to other objects in a simulated environ-
ment; they serve as pointers that express the position of automata relative to other
entities in space —time. Those entities may themselves be fixed in space or not, and the
conventions may take on a dynamic or static nature. In the context of residential
dynamics, households may thus be registered to a home, a community, a property
submarket (or all of those things), as well as being linked to households with which
they interact as neighbors, buyers, sellers, etc.
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The fixture of location in the CA scheme affects CA neighborhoods. Neighborhoods
of interaction are more commonly symmetric in form in CA approaches and are
usually static in configuration, although some exceptions exist (see Shi and Pang,
2000). By contrast, GA are endowed with flexible and dedicated rulesets for determin-
ing relationships and for allowing those relationships to be varied in space and time.
Neighborhood configurations are allowed to be defined flexibly, as networks, polygons,
graphs, etc (Torrens and Benenson, 2005). The configurations and their determinants
may also change over space and time. This flexibility is important in the context of
residential mobility. Households may maintain a variety of neighborhood relationships
simultaneously: social relationships between members of a household, next-door rela-
tionships with neighbors in proximal apartments or houses, buyer —seller relationships
in property transactions, social affiliations with submarket residents of a given ethnic
background, etc. Similarly, properties may maintain neighborhood relationships, with
households, and also with other properties—houses on a real estate broker’s listing,
units in an apartment building, architecture consistencies with homes on a street, etc.
Moreover, these relationships may well be interrelated and interdependent, and will
most likely vary in space and time in a dynamic fashion as states and conditions
change and evolve. The search space for a relocation event may change as a function
of the properties that are evaluated, for example, with the result that the neighborhood
window shrinks and stretches as the household’s (and/or the submarket’s) conditions
evolve.

This flexibility can be captured through the use of neighborhood rules in GA
contexts, rather than by working with fixed neighborhood windows defined a priori.
For example, the neighborhood of consideration for a relocating household may be
related to the information provided to it, its state in the life cycle, its income, social
biases, etc. Moreover, the rule may be time dependent, with the result that the house-
hold’s neighborhood of search narrows with the time spent searching, or the longer
their home stays on the market unsold. It may also be geography dependent, with a
search ignoring certain (over-budget, under-budget) submarkets in a city altogether,
or concentrating around properties in a desirable school district or within transit
commutes of an employment center.

3 A GA model of residential mobility

I will discuss the construction of a residential mobility model, composed of GA, in this
section, to elaborate the GA methodology presented in section 2 and to emphasize
the validity of the approach with respect to the representation and examination of
residential systems. The model is used in section 4 to build simulation scenarios
relating to residential mobility in a synthetic community of households and a hypo-
thetical property submarket. The model is designed to represent households and
properties in a realistic fashion, with life-like behaviors and characteristics. Much of
the theoretical literature on residential mobility has been considered in designing the
model: hierarchy in housing search (Speare et al, 1975), stress and resistance to mobility
(Wolpert, 1966), household life cycles (Clark and Huang, 2003; Kendig, 1984; Pickvance,
1973), and household preferences for submarkets and real estate (DiPasquale and
Wheaton, 1996; Waddell, 2000).

Residential mobility is treated as a two-stage process. First, households decide
whether to initiate a relocation event or not, looking both to internal and to external
stressors in formulating this decision. If they decide to engage in a housing search,
they do so based on preferences that relate to their internal characteristics and those
of the larger community and submarket in which the search is focused. Communities
and submarkets are represented as comprising many individual properties and
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independent households (figure 2). The community and submarket are, however, treated
simultaneously as an independent entity in the model, with the capacity to evolve within
it and to serve as an object to which households react and with (and within) which they
may interact.

The model is specified as a collection of interacting GA. Each automaton is designed,
in a heterogeneous fashion, with reference to an entity ontology based on fixture in space,
state variables relevant to that ontology, state transition rules, georeferencing conven-
tions, movement rules, neighborhoods, and neighborhood rules. In addition, a set of
constraint parameters is introduced to facilitate the generation of simulation runs.

3.1 Entity ontology

Spatial fixture—whether entities move or are in situ—is used as the basic ontology
for defining entities in the model. A number of entities relevant to residential mobility
are introduced under this umbrella: real estate submarkets, communities of residents,
individual properties, resident households, and relocating households (figure 2).
Relationships between those entities are hierarchical, such that the entities are nested
spatially [figure 2(a)]. This mirrors Speare et al’s (1975) taxonomy of factors governing
residential mobility. It also introduces geography at a fundamental level. Real estate
submarkets—which are widely regarded as being of importance in determining indi-
vidual-level mobility (van der Vlist et al, 2002)—comprise properties that fall within
their boundaries; both remain fixed in space. Properties contain resident households,
which may be content to stay where they are, or may seek to relocate [Brown and
Moore’s (1970) movers and stayers]. These households form a dynamic community of
people within the submarket. They are distinct and are treated as such in terms of their
geography—they may move, for example; relocating households may actively engage in
a property search within the submarket, although they may not necessarily belong to
that community as residents.

& Relocating household

e entering submarket
=8

Segregation

/ Submarket_| - preference
& Wealth
Relocating | preference
household

’—'—\ = Submarket scale
Inertia
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T 3 ) household
o = =
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Figure 2. (a) The hierarchy of entities in the residential location model; (b) the organization of
preferences across scales.

3.2 State variables

State variables are used to ascribe relevant characteristics to modeled entities, at
various scales. They determine the behavior of modeled entities upon input to transi-
tion rules. Modeled households are heterogeneous with respect to these states. (For
example, individual households are parameterized heterogeneously in the simulations
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introduced later, as illustrated in table 5 toward the end of the paper.) The nested
hierarchy of entities enables units at higher scales to derive state conditions by means
of dynamically collecting the attributes of entities within them, which may also be
active at lower scales of observation. For example, average household income for a
community may be calculated simply as the average income of households within it.

The GA employed in this model are used to represent ‘atomic’ (people-scale)
spatially nonmodifiable entities and are attributed heterogeneous life-like states (and
independent behaviors) that closely match the characteristics and functionality of their
real-world counterparts (table 1). As the makeup of a community of those automata
alters at an individual level, those changes register in state values at higher scales.
Once again, these higher level entities are themselves represented as GA (table 1).
Submarkets are fixed GA in the contexts of the examples discussed in this paper.
They could, however, be treated as geographically dynamic GA, with their boundaries
expanding or contracting as a function of the activities and interactions of the
separately defined GA entities within them.

Individual property automata are used to represent the urban residential fabric.
They are specified with an array of authentic state variables that lend them property-like
attributes. The intention is to provide a realistic opportunity setting for household
automata. Considered collectively, this setting forms a spatial landscape of socioeco-
nomic attributes (after Knox, 1989; O’Flaherty, 1996; Rossi, 1955), with which simulated

Table 1. State variables used in the models.

Residential submarkets
Average property value
Maximum property value
Minimum property value

Residential communities

Total number of households

Total number of yellow households
Totol number of blue households
Total number of red households
Average household income
Average household age

Fixed property automata

Housing type (house, apartment)
Occupation status (occupied, not occupied)
Housing tenure (rent, own)

Sale or rental status (for sale, not for sale, for rent, not for rent, under offer)
Monthly mortgage value or rental value
Land use (residential, nonresidential)

Lot size

Density

Number of bedrooms

Time on the market

Mobile household automata

Household type (settled, relocating)
Average monthly household income
Average household age

Number of children

Household size

Ethnicity (yellow, blue, red)

Life-cycle stage (young, middle, senior)
Period of residency, in time steps
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households may engage and within which they may interact—location stressors (after
Clark and Cadwaller, 1973); economic attributes (after DiPasquale and Wheaton, 1996;
Rosen, 1974); and ethnic factors (after Cronin, 1982; Farley and Frey, 1994; Farley et al,
1978; Galster, 1991).

Similarly, household automata are specified with various state descriptors that help
in informing their mobility behavior and in facilitating simulation of their awareness of
the dynamic conditions that surround them. The set of state variables included in the
model enables the specification of realistic household profiles, simply by combining
different attributes. A proxy variable is used to represent ethnicity (e), with households
represented as either red, yellow, or blue automata. Following the discussion of life courses
in the literature (Clark and Huang, 2003; Kendig, 1984; Pickvance, 1973), houscholds
are classified into particular life-cycle states (/). This is a simplified interpretation of the
life-cycle notion, but one that could be extended in principle. “Young’ households represent
those that have recently left a family household unit and are striking out on their own
for the first time. ‘Middle’ households are used to represent households that might be
starting their own families or may have already started a family. ‘Senior’ households
correspond to those households that are entering (or have already entered) retirement.
Life-cycle stages are calculated on the basis of the average age of a household (a):

if 22 < a <35 [ = ‘young’; 4
if 35 < a < 65, [ = ‘middle’; 5)
if a > 65, [ = ‘senior’. 6)

(Households with average ages below 22 are not considered in the model.)

3.3 State transition rules

State variables provide the ingredients for transition rules, as mentioned. Transition
between these states is governed by two sets of rules in the model: those relating to
transition in property, and those that are relevant to households.

Property state transition rules. The issue of devoting state transition rules to property
entities is interesting. Transition rules are generally understood to act as mechanisms
for assigning behaviors (in an agent-based context) or state transition functionality
(in a CA context) to automata. In the real world, properties have very few actual
behaviors of their own; they deteriorate if they are not maintained (O’Flaherty, 1996),
but that is about it. Any functionality that they might be understood to offer relates to
the contribution of real estate to a larger submarket for the most part, or the uses that
properties afford residents. Submarket dynamics are more appropriately modeled at a
submarket scale and household utility for property is perhaps better considered in
terms of household preferences for real estate or the perception of its use (Golledge
and Stimson, 1997; Rosen, 1974). To accommodate this in the model, properties are
treated as containers for households, and households react to the characteristics of
properties, among other stimuli.

State transition of property units is mediated directly by the households that inter-
act with them, with the aforementioned considerations taken into account. Occupation
status, tenure, sale or rental status, mortgage or rental value, and density states are
altered directly by household automata as they examine, rent, buy, sell, and reside
within the properties.

Only two state transition rules are assigned directly to property automata in the
model. The first simply keeps track of the duration which a property that is for rent
or sale spends on the market. The second adjusts the rental or sale price according
to this state. If a property has spent too many days on the market (n2) without selling or
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renting—above a certain threshold of days (8)—then its mortgage or rental value (v) is
discounted by a proportional value (1) in a subsequent time step, + 1 (DiPasquale
and Wheaton, 1996; O’Flaherty, 1996; Waddell, 2000).

iftm=0,v.,, = v, elsev, = v, 7
where 0 < 4 < 1.

Household state transition rules. Household automata states are allowed to undergo a
transition in two ways. The first is based on the simulation clock for a given run;
households progress through life-cycle stages as a simulation ages (Kendig, 1984;
Pickvance, 1973), and the duration of their residency in a home changes in a similar
way. A second scheme is used to change between household automata states, and this
is based on a series of preference functions. These preferences are designed in the
tradition of stress-resistance hypotheses (Wolpert, 1966) and largely relate to house-
holds’ contentment with their own property, the real estate submarket in which the
property sits, and the community to which a household belongs. Contentment relates
to households’ internal states (income, average age, number of children, size, ethnicity,
life-cycle stage, duration of residency), the states of the property in which they reside
(housing type, tenure, mortgage or rent value, density, number of bedrooms), the
condition of the submarket in which the property sits (average property value, max-
imum property value, minimum property value) and conditions of the community with
which they are affiliated (number of households, ethnicity profile, wealth, average age).
Contentment is articulated using a series of preference functions: inertia, hedonic
property, wealth, and segregation preferences.

An inertia preference is used to generate movers and stayers (Brown and Moore,
1970); it operates across scales and serves to evaluate residential stress (Clark and
Cadwaller, 1973; Wolpert, 1966), due to changes internal to the household or to the
submarket and community it belongs to [figure 2(b)]. The inertia preference governs
whether a household will change to a mobile state or not. It is triggered by three
other preference functions: a hedonic property preference, a wealth preference, and
a segregation preference.

A hedonic property preference is used to encapsulate households’ property needs;
real estate is treated as bundles of attributes, each with associated value (Rosen, 1974).
For resident households this is used to calculate the value that they place on their
property; for relocating households this becomes part of their housing search. House-
hold automata have a preference for housing type and tenure [see Golledge and
Stimson (1997) and Clark (1982b) for theoretical background]. In addition, they have
a preference for housing price. Type and tenure preferences are formulated, simply,
on the basis of the life-cycle state of a household (Clark and Huang, 2003). “Young’
households have a preference to rent apartments, ‘middle’ households prefer to buy
apartments, and ‘senior’ households prefer to buy houses. The expression of a housing
value preference is also specified simply; households will not buy or rent a property
that is more expensive than one third of their monthly income. Socioeconomic and
cultural preferences operate at a higher scale [figure 2(b)].

Wealth preferences allow household GA to assess whether a neighborhood is too
poor for them to enter or remain in, or whether it is too expensive to consider
relocating to. This is equivalent to the value orientation discussed by Golledge and
Stimson (1997), among others. A submarket GA is regarded as too expensive for a
particular household if the average monthly mortgage or rental value of a home (v,,,)
is greater than the household’s average income. If the maximum price in the submarket
(Vmax) 18 below a given household’s monthly average income (i), then the submarket is
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regarded as being too cheap; if a household’s income is lower than the lowest price
(Vain )» the submarket is too expensive.

A segregation preference function is used to represent households’ likes and dislikes
regarding the ethnic profile of residential submarkets. The function is specified in much
the same way as Schelling’s segregation models (Schelling, 1978)—through the use of
tolerance thresholds to specify households’ comfort with certain conditions in the
submarket, in this case ethnicity. In the simulations to be discussed in later sections,
yellow household GA have no preference regarding the ethnic composition of a sub-
market. Blue household GA exhibit a level of bias in their preferences; they have a
preference for submarkets where red household GA form no more than one third of
the total population. Red household GA prefer submarkets where they form a majority,
above one half of the submarket’s residential population.

3.4 Georeferencing conventions

A variety of georeferencing conventions are used in the model. At the top level of
hierarchy for entities in the model [figure 2(a)], submarkets are georeferenced in terms
of their position within a larger urban system. We will consider a single submarket in
the simulations to be described. However, multiple submarkets could be georeferenced
in a city system by their absolute location within a lattice of submarket automata, each
perhaps associated with some distance and/or accessibility to a city center or centers.

Properties are georeferenced directly, with the use of the Cartesian coordinate
location of their centroid within the property automata lattice. Household automata
are then associated with this point.

Households are georeferenced both directly and indirectly. Settled houscholds are
georeferenced to their property using Cartesian coordinates. Relocating households
are georeferenced directly—their absolute position within the lattice is registered using
Cartesian coordinates. As they search for potential homes they are georeferenced indirectly
with respect to the last property they viewed and the next property that they plan to view.

3.5 Movement rules

Movement is fashioned as a migration event (Rossi, 1955) in the model. This is
fundamentally different to the random cell activation and deactivation mechanisms
of other automata-based residential models (O’Sullivan, 2002; Portugali, 2000; Sakoda,
1971; Schelling, 1971). Migration events are composed of independent movement mech-
anisms—inertia, housing search, displacement, and stopping rules. Through these
movements households relocate, migrate, and move within their simulated environ-
ments. Those rules animate households through a fixed property environment, but
also relate to inertia with respect to shifting real estate and community dynamics.

The decision to relocate, for example, is based on an inertia calculation, as men-
tioned. This is a fundamental rule in the model; the end result of the rule may be
a transition for a household from a fixed state to a mobile state and vice versa.

Once mobile, households engage in a housing search. Modeled households move
around the simulated property market by hopping between residential opportunities,
one property at a time, evaluating the state conditions they encounter and using these
states as input to a preference evaluation decision (Clark, 1970). Their movement
through the environment dictates the order in which various property alternatives are
evaluated (Clark, 1993).

If households agree on the sale or rental of a property, a displacement rule is
initiated, under which the relocating household moves into a property (and changes
to a settled state) and the former resident vacates the property (and changes to a
relocating state). This rule plays a role in community and submarket formation at
a higher scale (van der Vlist et al, 2002); new households alter the overall community
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profile and the price paid for a property may influence average values recorded at a
submarket level. Similarly, a change in tenure is reflected in the wider submarket
records. In this sense, then, higher level entities progress through states as the condi-
tions in the properties and households within them change. Cross-scale dynamics are
thus supported.

Households may enter submarkets for housing search on an exogenous basis, in
addition to possessing endogenous relocation decisions. A dedicated rule for entry and
exit controls the influx and evacuation of households in this context.

In addition, a stopping rule is used to provide chances for relocating households to
terminate their housing search (Clark, 1982b; Clark and Flowerdew, 1982). The oppor-
tunity to stop a search presents itself at two scales. A relocating household may elect to
abandon a search, at the community and submarket scale, on the basis of its wealth
and/or segregation preferences for conditions at that scale. Within a submarket a
housing search stops when a relocating household moves into a new home, or when
the household has evaluated all available properties but has not been adequately
satisfied by any of them.

3.6 Interaction neighborhoods and rules

Neighborhood interaction definitions vary in the model, depending on the automata
considered. Neighborhoods for submarkets consist of all household and property
automata active within a submarket and community. A variety of statistics are gen-
erated from these neighborhoods, dynamically, when a simulation is run. The values
register as state variables in submarket automata (table 1).

The rule base for neighborhood delineation is based on space and time for household
GA. For relocating households the neighborhood initially consists of a submarket as they
enter the simulation. Once they have begun to search a submarket, their neighborhood
consists of the independent property that they chose to evaluate. At a given transition point
after that they register their current location (which may be a property automata),
previously viewed property, and next-view property as their neighborhood for interaction.

3.7 Constraints

Some constraint parameters are also introduced to the model design to facilitate
simulation. First, a growth parameter is included to control the volume of new search-
ing households inputted to the system. A number of relocating households is delivered
to the modeled submarket at the start of a simulation run. Similarly, a number of fixed
property automata are active in the housing market at the start of a particular simu-
lation run. Dependencies between state variables and preference functions also create
a set of constraints. Relocating-household GA may purchase only properties they
can afford. Also, relocating households will consider only submarkets that are either
affordable or above a certain price threshold. The latter ensures that relatively
more affluent households do not relocate to relatively poorer-profile neighborhoods.
Furthermore, households are constrained to searches for properties that have enough
bedrooms to accommodate their household size.

3.8 Time and dynamics
The model is organized to handle time in an event-based fashion (Worboys, 1994).
Time is structured into discrete packets of change (Anderson, 2002), nested hierarch-
ically with relation to other such packets. Several clocks operate within the model, each
with their own rhythms; modeled entities orchestrate their activities with respect to
whichever clock is appropriate.

One of the advantages of an event-based approach in the model is that simulations
may incorporate cross-scale dynamics. Lower-scale entities (households, properties)
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may be designed to interact with and react to changing conditions at higher scales
(property submarkets, communities of households), as they evolve. For example, as the
ethnic profile of a community changes, the household residing in a given property may
grow intolerant of the new ethnic profile of the community; having previously been
content to stay, the household may choose to relocate.

4 Simulating residential mobility scenarios

The simulation operates on an event-based scheme, with events designed to coincide
with the various stages that constitute residential-mobility decisions (Clark, 1982b).
A typical simulation run proceeds as follows (figure 3).

Create static Create mobile
property household
automata automata

J
i Decision Ve
¢ property on
» ORIIONE market
Enter Decision to
relocating stay in
household submarket
v
Begin Suitable
property property
search found?
h 4
Relocating Settled ’
household household
moves in moves out ’
Mo_del Household
spring leaves the
cleaning submarket

Figure 3. The sequence of events in an iteration of the simulation.
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The first stage in a model run involves the creation of a virtual residential
environment. ‘Robot’ GA are called upon to seed the model with static automata
properties. These robot GA enter the model and code attributes into a blank environ-
ment, thereby establishing a simulated residential property market. Specific units are
rendered active in the model and are assigned heterogeneous property attributes
(table 1). Following this, activated property GA are then populated with settled
household GA, characterized by heterogeneous life-like attributes.

Once individual property sites have been established and populated, the settled
household GA that occupy them call upon their inertia preference function to make
a decision about whether to move home or not. This is a multiscale evaluation: house-
hold GA look both to their internal household characteristics and also to the attributes
of the submarket in which they reside before making a decision [figure 2(b)]. Changes
in households’ internal states (internal stress) may result in a decision to move—a
transition to a new life-cycle stage, a growth or reduction in household size, the arrival
of children, etc. At the same time, there may be forces at work at the scale of the
submarket (environmental stress) that influence their decisions to relocate or not.
These can be initiated endogenously within the system—for example, changes in the
socioeconomic profile of a neighborhood through gentrification or neighborhood
decline—or could be user specified as exogenous shocks. If a settled household GA
decides to move, its property (the individual fixed property GA that the household
is associated with) is flagged as being for sale or for rent, as the case may be. This
registers in the appropriate state variable for the GA.

At this stage, a relocating household GA is delivered to the model, in search of a
new home. Currently, incoming GA are generated synthetically, as randomly-defined
or user-defined entities and introduced from the top down; they enter the simulation as
a simple feed. Relocating GA hold a set of preferences for their ideal location and
home, and must balance these desires within the bounds of what they can afford.
Currently, only one relocating household GA populates a given simulation iteration
at any instance, although many settled automata are available for it to interact with.
First, a relocating household GA looks to the community and submarket to determine
if it is suitable for its needs—whether it has the right ethnic profile and whether it is
too expensive or too cheap. If the submarket and community are suitable, the relocat-
ing household will begin to focus its housing search on individual properties in the
submarket. Potential homes are assessed for their suitability to individual households’
needs.

The relocating household GA visits active properties randomly, evaluating their
characteristics against its preferences. In the simulation described in this section, the
evaluation is formulated in a hierarchical fashion. A relocating GA begins the evalua-
tion by checking that the housing type (k) matches the type in its preference set. Next,
the relocating household GA evaluates tenure (r), followed by price (v). This is quite a
simplistic method for matching preferences with attributes, although it does provide
for the weighting of choices in the tradition of discrete choice models (McFadden,
1974).

If a relocating household GA finds a suitable property that matches its preferences
and its budget, it trades places with the settled household that occupies the property.
The sale (or rental) status of the property is updated to reflect the fact that it is no
longer on the market. The new household is moved in, changing status from relocating
to settled, and the original household is moved out, again changing status. These
adjustments are also registered in the global characteristics of the submarket and
community, thereby facilitating change above the scale of an individual. For example,
if a red household replaces a blue household, the balance of colors in the community
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will be altered to reflect that; if a household with a very high average income decides to
move into a community, the maximum value for average income in the community will
be revised to indicate the change.

The model is then put through a series of spring-cleaning exercises before begin-
ning a new iteration. Any relocating GA that have not satisfied their searches after
visiting all available properties leave the submarket and disappear from consideration
in the model (that is, their stopping rule is triggered by the termination, through
failure, of the search in a submarket). If settled households have not sold or rented
their property, they may decide to discount the price they are offering the property for
in the next iteration of the simulation. By iterating through these events in a sequential
fashion, the simulation allows for the evolution of the submarket and community, its
population, and the individual properties contained within it. Submarkets could,
potentially, go through cycles of decline and gentrification, for example. The socio-
economic composition of the population could also be allowed to cycle through
various stages—for example, from a youthful profile to one more characteristic of
‘empty-nesters’. The introduction of shocks of various descriptions to the submarket
could also allow for the exploration of large-scale responses to things such as an influx
of wealthy households, or community response to households of varying sociodemo-
graphic backgrounds, from the bottom up. In the next section are presented examples
of simulation under such scenarios.

4.1 Simulation scenarios

A simulated environment was built, replete with a range of properties, for the purposes
of experimenting with two simulation scenarios. The artificial properties were populated
with households, forming a synthetic community. A variety of relocating households
were introduced. Their housing-search behavior stimulates transition in the submarket
and community; incoming households act as a catalyst for change. The influx of new
households was tailored to evaluate economic, social, and demographic response in
the property environment and household population, across scales from the household
and property to the submarket level.

The submarket was constructed as a 250 by 250 unit lattice, in which twenty-nine
properties were activated in the market at the start of a simulation (table 2). A community
of households was specified randomly within constraining bounds; this yielded a
population with ten red households, six yellow households, and nine blue households,
with household incomes ranging from $3 000 to $15000 per month (figure 4).
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Figure 4. A residential model simulation run, showing geographic automata (GA) attributes.



Table 2. Initial state variables for a residential mobility simulation. All locations were initially specified as being occupied, and all sites corresponded to

residential use with 0 days on the market. Apt and hse refer to apartment and house, respectively.

Site location Housing type Housing tenure Monthly Lot size (m?) Density Bedrooms
rent/mortgage
(—55, 83) apartment rent 3000 100 0.0100 2
(-5, 74) apartment rent 3300 120 0.0083 2
(52, 63) apartment rent 3500 140 0.0071 1
(=56, 72) apartment rent 3000 90 0.0111 2
(-7, 62) apartment rent 3000 100 0.0100 2
(48, 51) apartment rent 3400 110 0.0091 2
(—55, 60) apartment rent 5000 130 0.0077 2
(-9, 51) apartment rent 5200 140 0.0071 2
(46, 40) apartment rent 6200 160 0.0063 3
(=57, 33) house own 3000 100 0.0100 4
(=27, 31) house own 4300 110 0.0091 3
(15, 23) house own 3000 85 0.0118 4
(34, 18) house own 3000 80 0.0125 2
(52, 11) house own 5000 100 0.0100 4
(=27, 19) house own 3000 90 0.0111 3
(21, 10) house own 2500 90 0.0111 4
(—48, 6) house own 3000 200 0.0050 4
(—18, 1) house own 5500 210 0.0048 3
(20, 19) house own 5000 175 0.0057 3
(40, 14) house own 5000 180 0.0056 4
(46, —14) house rent 2000 50 0.0200 5
(—12, 14) house rent 5500 100 0.0100 2
(24, —44) house own 6500 400 0.0025 3
(73, —65) house own 7500 400 0.0025 6
(=21, —33) house own 6500 110 0.0091 4
(—48, —30) house own 10000 350 0.0029 3
(—64, —43) house rent 4000 160 0.0063 5
(13, =72) house own 5600 100 0.0100 3
(=55, —=76) house own 6000 550 0.0018 6
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4.1.1 An economic scenario

The goal of the simulation scenarios is to test the resilience of the systems to change from
the bottom up. For the purposes of evaluating economic dynamics, households with very
low average incomes were introduced to the simulation, as were households with
very high average incomes, each household performing a search on the basis of its
hedonic preferences. Both sets of households evaluated the income profile of the
submarket and promptly terminated their search, as their preference rules for value
platform determined. Next, a household with a price preference that was within an
acceptable range was introduced. The household elected to begin a search within the
submarket. However, its preference for housing type was not satisfied within that price
range, and it left the submarket after evaluating all available properties.

The discounting function, designed to lower the price of a property in the simula-
tion—if there was insufficient demand for it—provided only minor changes in the
economic dynamics of submarkets. This is because budgets for relocating households
were based on their income in the model; this ensured that very affluent households did
not buy or rent very cheap houses, and vice versa. So, small reductions in property
values did very little to permit access to submarkets for lower income groups,
particularly because incoming relocating households looked to the average value of
the submarket before deciding whether to continue a search. This is what happens
in the real world; gentrification and decline are slow processes, and are likely to
be more dependent on factors such as crime, social problems, and the quality of
recreation and retail opportunities in the submarket—factors not represented in this
model. However, the price profile of the submarket was also quite resilient to changes
in the internal dynamics within the households that form the submarket. Adjusting the
average income of individual settled households did not affect the price of property in
the region, because the price at which a household sold or rented a property was not
linked to its income in the model; at this scale, price was purely demand driven.

The resilience of the simulation to these changes is consistent with situations in
residential submarkets in many urban areas in the United States. The sorts of phenom-
ena observed in these experiments are indicative of lock-out situations in wealthy
suburbs, whereby lower income groups are barred entry to suburban areas because
properties there are not affordable (for discussion in US contexts, see Cronin, 1982;
Farley and Frey, 1994; Farley et al, 1978; Galster, 1991; Knox, 1989). Even if affordable
housing is constructed in these areas, lower income groups may still be excluded by
minimum lot requirements—zoning codes that place a minimum size on residential
lots. For example, a minimum lot ordinance calling for half-acre lots raises the overall
price of real estate, even if the structure price of a property is relatively low, simply
because the land component of the price remains high.

4.1.2 A sociodemographic scenario

A series of targeted sociodemographic experiments were then performed with the
model. An experiment was run to investigate life-cycle dynamics in the model. Relocat-
ing households with lower-than-average and higher-than-average ages were introduced
to the community. As these households began to occupy properties in the simulation,
so the demographic profile of the submarket began to change accordingly. Similarly,
experiments were performed whereby household-size variables were changed for
particular settled households. If the increase in household size surpassed the number
of bedrooms in their home, they placed their property on the market for sale or rent.
In this sense, natural demographics and life-cycle transition act as a catalyst or the
impetus for submarket and community change.
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Similarly, changing social dynamics act as drivers of residential transition in
another experiment. A stream of rich households of varying colors was introduced to
the simulation, with incomes within the acceptable bounds for property prices in the
submarket. As relocating households found suitable properties to buy or rent, they
moved into the submarket, displacing the previous residents. When the incoming
household displaced a household of a different color, the ethnic profile of the sub-
market altered to reflect that change. Slowly, the balance of ethnicity in the submarket
began to change. This prompted two effects. The incoming households began to
react differently, rejecting the submarket, depending on their particular preference for
ethnic profile. Also, the internal dynamics of the submarket began to change. As
the ethnic balance of the submarket altered, the ‘stressors’ of previously settled house-
hold GA were triggered by the shift in balance, and they began to place homes on the
market. By varying the ethnicity of incoming relocating household GA, it was possible
to shift the ethnic balance of the submarket from mixed conditions to dominance in
each of the colors, and from segregated to mixed conditions. Overall, a phenomenon of
sociospatial segregation is mimicked akin to the classic Sakoda (1971) and Schelling
(1978) models. However, the model used here diverges considerably from the simple
formulation of those examples. The behavioral basis allows for investigation with the
household-specific and property-specific components responsible for driving segrega-
tion, as well as the dynamics of those interactions across scales. This is a topic of my
ongoing research.

5 Conclusions

The purpose of this paper is to introduce a new approach to modeling residential
mobility, on the basis of GA. I believe the technique to be useful for such purposes
and have demonstrated its use with references to construction of a richly specified
model of residential mobility.

The model focuses on residential location dynamics, specified at an ‘atomic’
scale—the description of heterogeneous individual households and properties, which
are dynamically active within a larger community and residential submarket. The
switch to a local scale continues within the model parameters, and is manifest in
the fidelity of entities within the model. The model is built around a GA methodology.

Individual-scale entities are described with life-like state variables. However, their
independent decisionmaking behaviors in space are also specified, with transition rules
designed to represent preferences for housing, house markets, and communities.

The model is valuable as a ‘what-if” tool for experimenting with scenarios relating
to residential dynamics. I have illustrated the application of the model for these
purposes in the context of economic and sociodemographic scenarios. A series of
experiments run with the model were described, which focused on an evaluation
of the sensitivity of the simulated community or submarket to changes in its economic,
demographic, and ethnic profile, as evolved from the bottom up. These scenarios made
use of the geographic functionality of the model. In particular, the spatial functionality
of the framework facilitated the design of simulations that closely represent residential
property markets and communities of residents and their dynamics. Entities of varying
sizes could be designed, and nested neatly with respect to their position in a cross-scale
and dynamic hierarchy. Varying neighborhood functions were also facilitated, as were
direct and indirect georeferencing conventions. Also, the ability to accommodate
migration rules was quite significant.

We can draw some conclusions about the general value of the methodology for
modeling residential mobility, stemming from its geography-specific formulation. To a
certain degree the approach demonstrated in this paper might be regarded as breathing
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fresh life into the residential-mobility-modeling literature. The infusion of spatially
explicit functionality and mechanisms, in particular, is significant. We can draw other
conclusions.

The first refers to cross-scale dynamics. As the model demonstrates, GA enable
the organization of processes and phenomena at appropriate spatial scales, with
functionality—states, state transition rules, georeferencing conventions, movement
rules, neighborhood relationships, and neighborhood rules—needed at that level of
detail. Larger-scale patterns and behaviors evolve across scale barriers, from a founda-
tion lower down in the hierarchy. Lower level phenomena may be designed to respond
to conditions at a higher scale, organically and dynamically, as they emerge over the
course of a simulation run.

Spatial interaction is a second consideration. Spatial interaction is flexible under
GA and may be richly expressed through movement-mediated behavior. Interaction
across scales is supported, as noted, and the emergence and capture of novel patterns
and processes is possible. There may be any number and form of relationships between
entities in a GA model. Direct and indirect dependencies and associations have been
demonstrated in this paper, but others may be formulated, as Voronoi adjacencies,
entity-relationship links, etc.

The third consideration relates to ontology based on fixture in space. The notion is
facilitated in the GA methodology and is incorporated into the model described in this
paper. The idea is useful for delineating entities and formulating their behaviors and
interactions in a model. Considered cursorily, it helps to distinguish between cellular
and agent automata. The functionality of both can be subsumed by GA, and this may
help to avoid confusion—for example, when CA cells are made to mutate magically
like bacteria in an agar environment—in cases in which such behavior is not appro-
priate, say in the context of property and real estate transition. More profoundly,
ontology based on fixture in space allows for the specification of geographic entities,
flexibly endowed with geographic functionality. The methodology is not constrained, for
example, by static neighborhood filters that deny action at a distance; mobile and fixed
entities may be defined independently and may be made to interact (or not) in dynamic
spaces. This has important implications for the potential use of GA tools for theory
building or theory testing. The questions that might be asked and answered with GA
are not constrained by the methodology underpinning the tools they might be used to
build.
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