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Abstract

This paper introduces a hybrid automata model for testing ideas and hypotheses relating to urban
gentrification dynamics. We focus on the agency of relocating households in dynamic property mar-
kets as the theoretical basis for construction of the model. The methodology employed makes use of
hybridized cellular- and agent-automata that allow for representation of co-interaction among fixed
and mobile entities in urban settings across multiple scales. Simulations run with the model are based
on various hypotheses from gentrification theory and these hypotheses are tested in simulation by
running the model through theory-informed scenarios. The usefulness of this scheme is demon-
strated through application of the model to a historically under-invested area of Salt Lake City in
Utah that is undergoing recent transformation. Our results show that the hybrid approach is useful
in representing human behavior in complex adaptive urban systems. Moreover, our model proves to
be a useful test-bed for studying gentrification.
� 2006 Paul M. Torrens. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Gentrification refers to the transition of property markets from relatively low value
platforms to higher value platforms under the influence of redevelopment and influx of
higher-income residents, often with spatial displacement of original residents and an
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associated shift in the demographic, social, and cultural fabric of neighborhoods under its
influence. The phenomenon has enjoyed the spotlight as a topic of academic inquiry in
economics, politics, and sociology for about four decades. Two mainstream ideas predom-
inate in the geographical literature: humanistic and Marxist approaches. Hamnett (1991)
summarizes the distinction between the two in terms of the difference between ‘‘the liberal
humanists who stress the key role of choice, culture, consumption and consumer demand,
and the structural Marxists who stress the role of capital, class, production and supply.’’
(p. 174). Both approaches have been considered in urban geography contexts (Bondi,
1999; Cambridge Systematics & Group, 1991; Clark, 1992; Hamnett, 1991, 1992; Lees,
2000; Ley, 1987; Smith, 1987, 1992). There is general consensus, however, that the human-
ist and Marxist perspectives offer relatively translucent views of gentrification in isolation
(Hamnett, 1991). An integrated explanation is needed, one that accommodates supply fac-
tors (the production of devalued areas and housing) and demand factors (the production
of gentrifiers and their specific consumption and reproduction patterns).

Within geography, gentrification studies have largely been approached through theory-
based consideration of causes and consequences. The topic remains largely untouched by
modeling or simulation, despite the existence of a theoretical foundation for model-build-
ing and the need for synthetic simulation environments for exploring ideas that might not
otherwise be open to investigation on the ground. There are barriers to entry, however.
The breadth of the explanatory landscape across socioeconomic, cultural, political, and
spatial factors often gets in the way of methodology. There is also a variety of scales of
observation, as well as a diversity of agents and relevant factors, to be considered when
model-building. Moreover, models are, by nature, data-hungry, and there is often little
in the way to feed them when it comes to considering gentrification.

Treating gentrification as a complex adaptive system can help. The study of complex
systems represents a relatively new approach to social science. Put succinctly, complex sys-
tems ideas focus on how the minutia of a system interact and co-adapt, often non-linearly,
with each other and their environment, and how these dynamics might give rise to collec-
tive system-level phenomena. Traditionally, social science research has been challenged by
a dichotomy between the individual and the aggregate. There are well-known barriers to
overcoming this; ecological fallacy (Wrigley, Holt, Steel, & Tranmer, 1996) and the Mod-
ifiable Areal Unit Problem (Openshaw, 1983) are examples, as are difficulties in reconciling
top-down reductionism and bottom-up generative science (Schelling, 1978).

The tool par excellence of complexity modeling—the automaton—can be used to over-
come some of these difficulties. Automata have been used, successfully, to model a wide
variety of complex urban phenomena (Benenson & Torrens, 2004): urban growth (Batty,
1991), land-use change (Engelen, White, Uljee, & Drazan, 1995), pedestrian dynamics
(Haklay, O’Sullivan, Thurstain-Goodwin, & Schelhorn, 2001), residential mobility
(Benenson, 1998), socio-spatial segregation (Portugali, Benenson, & Omer, 1997), vehicle
traffic (Nagel & Rickert, 2001), and so forth. We are aware of a single gentrification appli-
cation by O’Sullivan (2002), designed to test the use of graph-based formulations in
human geography contexts. Automata are useful in these endeavors because of their abil-
ity to accommodate complex adaptive systems in a bottom-up fashion, catering to descrip-
tion of individual-level and heterogeneous dynamics at the micro-scale, but they are
equally adept at interfacing with system-level considerations.

Use of cellular automata (CA) and multi-agent systems (MAS) separately in models of
urban systems is commonplace, with the selection of one tool over another dictating the
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sorts of questions that can be posed in simulation. There is general recognition of short-
comings to solely CA- or MAS-based approaches in urban simulation. CA are immobile in
their simulated environments because individual automata are not free to move in the
space in which they reside and also all spatial movement takes place through the diffusion
of information through a neighborhood (Faith, 1998; Torrens, 2003, 2004; Torrens &
Benenson, 2005). This makes them useful for representing landscapes and infrastructure,
but not mobile entities. On the other hand, MAS are mobile and may be programmed with
the freedom for true spatial mobility within the environments that they inhabit. This
makes them useful for representing mobile entities, but rules designed to model movement
and heterogeneous human agency are not always suitable for representing infrastructure.

The objectives of this paper are several-fold. An interest in constructing a simulation
environment for studying urban gentrification is foremost in these objectives. Our goal
is to build a system that can be used to explore both supply- and demand-oriented consid-
erations, as well as unified approaches. We believe a complexity approach can be useful in
unifying these views. We also believe that an automata-based methodology can be success-
fully applied in these endeavors, but we recognize the need for a hybrid scheme that lever-
ages the advantages of both CA and MAS. These objectives cannot be realized without
application to a real-world example.

Considering these goals, we have developed a model of inner city gentrification based
on a theoretical foundation that caters to supply and demand determinants in a unified
fashion. The modeling methodology makes use of a hybrid cellular- and agent-automata
scheme, designed on a behavioral basis such that relocating households are represented,
individually and collectively, through their interactions with the property market and its
related social and economic landscape. Behavior is formulated based on a decision-making
regime for households amid dynamic change. The model is put to the test in application to
a formerly deprived area of Salt Lake City that is undergoing dramatic change, and sim-
ulations are run under theoretical scenarios designed to test gentrification hypotheses.

The paper is organized as follows. The model is described in Section 2, where the design
of hybrid automata is discussed, the timeline for simulation is introduced, and the behav-
ioral foundation of the model is described in the context of its theoretical foundation and
mathematical formulation. The task of applying the model to a real world example is dis-
cussed in Section 3 with attention to the data resources employed and associated dataware
design. Our simulation assumptions are declared in Section 3 and the initial seed condi-
tions for simulation runs are detailed. Simulation scenarios are introduced in Section 4
and the results of those scenarios in simulation are discussed. The paper draws to a close
in Section 5 with concluding remarks.

2. Model description

2.1. The automata skeleton: entity types, characteristics, and nesting

Our gentrification model makes use of a hybrid approach that combines agent auto-
mate and cellular automata but distinguishes between them on a behavioral level. Two
types of automata are included: fixed automata, which act much like CA and are used
to model properties and collections of properties; and mobile automata, akin to MAS
and employed to animate residential households through urban (social, economic, prop-
erty, community) space.
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Fixed automata are considered, at the most micro-scale, over a regular lattice of square
cells. We sacrifice some realism here; in reality, real estate boundaries are more likely to be
irregular in delineation. There are advantages, however: the cell size is small enough (25 m)
to represent individual buildings and properties. This approach also necessitates some gen-
eralization, as it is difficult to accommodate diverse sizes of real estate in a regular and uni-
form cell grid. We get around this problem by treating size as a state attribute of fixed
automata. Each cell is endowed with a land parcel size value, and the model simulation
considers this value rather than the raster (pixel) cell size. This preserves spatial relation-
ships and tractability while allowing for the introduction of realism.

Geographically (and behaviorally), we specify three automata objects belonging to a
larger Fixed super-class: Market, Property, and FixedLand. We are interested in
micro-level dynamics, but also in macro-scale phenomena. To facilitate flow of informa-
tion across scales and to allow interactions to occur on multiple levels, we nest these auto-
mata. Nesting allows state attributes to be collated across scales and made available as
input to the decisions of other automata across scales (Benenson & Torrens, 2005; Tor-
rens, 2006, in press; Torrens & Benenson, 2005). Market automata objects are used to
capture meso-scale conditions and are formed as an aggregation of smaller-scale automata
composed within them. The relationship is behavioral as well as structural. Automata may
interact within a Market at that level; they may also react to the Market, itself, as an
independent automaton. In this way, micro-scale interactions may take place and these
changes can be updated dynamically at Market level.
Property and FixedLand automata objects operate within Market automata. The

major distinction between the two is that Property automata are active; their state vari-
ables are malleable under the influence of transition rules. FixedLand automata, how-
ever, are passive in simulation. Their state conditions are immune to transition rules,
but those states can factor into the decision regimes of other automata in the model.
We consider two types of FixedLand automata: road and access point, which are used
to introduce the influence of accessibility to sites outside the simulated system on residen-
tial behavior. Four access points are considered: downtown, highway entrance/exit, shop-
ping mall, and grocery.
Mobile automata are introduced as Resident automata objects and are used to

model households, their activities in Market objects, and their interactions with Prop-

erty objects and other Resident automata. Resident automata are endowed with
a set of state variables, including economic status, ethnicity, preferences for housing
choice, and with the ability to sense their neighboring environment (beyond the fixed
and symmetric neighborhoods classically employed in urban CA models).

The organization of automata in code is illustrated in Fig. 1; state variables (and their
abbreviations in the following equations) for each automaton are listed in Table 1.

State variables that have a value range from 0 to 1 are normalized. They are converted
from actual values to a 0–1 scale using the following formula:

V i � V min

V max � V min

ðiÞ

Vi is an actual state value for automaton i (e.g., property price, property size, accessibility,
or economic status (annual income)). Vmin is an actual minimum value across all auto-
mata, and Vmax is an actual maximum value across all automata.



Fig. 1. Structural hierarchy of modeled automata entities.
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2.2. Event timeline for simulation

The simulation process is illustrated in Fig. 2. A number of events take place in simu-
lation; taken together these events transition modeled households through their lifecycle
and through the property market (Fig. 3). These activities in turn shape dynamics at



Table 1
Automata state variables

Automata class State variable

Market Total number of properties
Total number of residents
Median property value
Median residents’ economic status
Median accessibility to downtown (0–1)
Median accessibility to highway (0–1)
Median accessibility to mall (0–1)
Median accessibility to grocery (0–1)
Vacancy rate (%)

Property Property price
Property value (0–1)
Property size
Property size value (0–1)
Land use (Vacant, Residential, Commercial, Industrial)
Housing type (Single house, Duplex, Condominium, 3–4 units apartment
5–9 units apartment, 10 or more units apartment)
Tenure (rent/own)
Household capacity
Number of occupied or rented residents
Vacancy rate (0–100%: V = O/Cp * 100)
Accessibility to downtown (0–1)
Accessibility to highway (0–1)
Accessibility to mall (0–1)
Accessibility to grocery (0–1)
Neighborhood median property value (0–1)
Neighborhood median residents’ economic status (0–1)
Neighborhood ethnic rate

Resident Economic status (0–1)
Ethnic status
Settled status (Stay, Move)
Resident’s preferences
Probability for a resident i choosing a property j

Probability for a resident i leaving i’s property j

Threshold for resident i’s probability of choosing a property
Threshold for resident i’s probability of leaving i’s property

i refers to a number of resident’s identity: 1 to n; j refers to a number of property’s identity: 1 to n; k refers to a
number of ethnic identity: 1 to n; l refers to a number of market: 1 to n.
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the level of sub-markets and the entire urban area, which have an influence again on the
micro-scale. In this way, gentrification is allowed to ‘‘emerge’’—we use the term cautiously
(Faith, 1998)—through the actions and interactions of automata across scales.

The simulation begins with parameterization of automata entities. Initial state condi-
tions are mapped onto the state variables of fixed and mobile automata at the atomic
(in terms of modifiable areal units) level of Property and Resident automata. These
states are aggregated to create variables for Market automata.

Time proceeds in simulation as packets of change, with distinct simulation processes
taking place within discrete bundles of time. At each time step, four main processes are
simulated: decisions of current residents regarding whether to move or stay in situ, inflow



Initial Distribution (Fixed & Mobile Agents) 

Residents’ Inflow / Decision to Move (Mobile Agents) 

Housing Choice (Mobile Agents) 

Update Values (Fixed & Mobile Agents) 

Time Elapsed ( t →  t + 1 )

Fig. 2. The temporal flow of events in simulation.

Fig. 3. The residential housing choice process.
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of new residents to the area, housing choice, and updating of state variables. This follows
schemes outlined in theory by Rossi (1955) and Clark (1993). The first three of these events
are governed by interaction among simulated entities through exchange of state informa-
tion and processing of that information using transition rules.

Decision to move—Under this event, current residents in the urban area calculate a like-
lihood that they will move. This is the seed event for future search dynamics.

Inflow of new residents—This process introduces new residents to the urban area, as
consumers of real estate. They have already settled upon a relocation event and will engage
in a housing search within the market. If that search is successful they will be added to the
existing population and may displace an existing resident. If the search is unsuccessful, the
searcher will exit from further consideration.

Housing search—A dedicated search regime is initiated if a household (an existing
resident who wishes to relocate, or newly incoming households who are interested in
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- neighborhood economic status 

- neighborhood ethnic profile 

Fig. 4. Hierarchal nested tree of household mobility, macro- and micro-choice.
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the market) has decided to engage in a real estate search. We make use of the concept of
hierarchical nested choice in formulating these events in simulation. The decision-making
process regarding real estate can be described by choice at two hierarchical levels: regional
and local. At a regional level, the choice is among spatial clusters (property sub-markets,
communities) as discrete alternatives at that scale of geography. At a local level, residents
are faced with decisions about individual properties as discrete alternatives. The two scales
are nested—choice of a cluster at a regional level locks the resident into considering only
alternatives within that cluster (Fig. 4). Agents are not exposed to higher-level temporal
dynamics until their activity in that lower-level geography has been exhausted (and this
time period is not fixed; agents can terminate a search at any time). A volume of evidential
and theoretical literature exist to suggest that households organize their search hierarchi-
cally in this fashion (Clark, 1982a, 1982b, 1993; Clark & Flowerdew, 1982).
2.3. Behavioral specification

The specification of modeled entities into fixed and mobile types, and their nesting
across scales, sets the stage for construction of relatively realistic gentrification simula-
tions. The hybrid automata approach facilitates this, but the real advantage of using auto-
mata lies in their ability to support independent, individual, heterogeneous treatment of
interacting entities and the dynamic systems they form and are influenced by. This can
only be achieved with attention to the behavior of modeled entities.

Our model is anchored to a rich theoretical foundation. Much of this foundation is
based on household behavior in real estate markets, although we also consider behavior
in, around, and relating to property and community.
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2.3.1. Lifecycle transition

Households pass through a lifecycle in the model: they interact endogenously and with
the clock in simulation, independently of other influences. In this sense, their state vari-
ables transition internally without neighborhood influence. This is akin to treatment of
state transition in Markov models and its role in residential mobility is well-described in
the theory literature.

2.3.2. Propensity for mobility

Propensity for mobility is a key behavioral component in the model. Without it, house-
holds succumb to inertia and do not move. The likelihood of mobility is based on endog-
enous factors (dynamically adjusted on the basis of lifecycle transition) and exogenous
factors in the model. This follows Clark and Cadwaller (1973) in theoretical foundation
and McFadden (1974) in methodological specification.

2.3.3. Discrete decision-making

We make use of a discrete choice approach in modeling household decision-making.
Available alternatives (property sub-markets, real estate units) are regarded as discrete
for decision-making purposes. The decision threshold is based on a utility-like calculation
that weighs the household-specific benefits to be obtained from available alternatives.
Decisions are not universal across all modeled households; households filter their evalua-
tions through independent preferences. An element of chance is introduced: utility of alter-
natives is expressed in terms of likelihood of choice relative to other alternatives. This
introduces the notion that households may not always act rationally.

Choice is hierarchical in nature in the model, with geography as the bifurcating mech-
anism. Households are presented with alternatives at two scales: the sub-market/commu-
nity level and at the level of individual units of real estate. Theory suggests that these two
scales are mutually inclusive (van der Vlist, Gorter, Nijkamp, & Rietveld, 2002). House-
holds nest their decision-making across these scales. First, they choose among spatial clus-
ters in the form of property sub-markets. Once a cluster has been selected, the search for a
property is focused within that cluster. There is an element of path-dependence to decision-
making in that the decision-making process is locked-in to a given cluster. There is, how-
ever, evidence that search is stratified in this way in the real world (Clark, 1982b).

2.3.4. Real estate ‘‘behavior’’

Real estate does not really have any behavior. Houses do not put themselves on the
market and they do not move; people offer them for sale and relocate. Real estate dynam-
ics are a by-product of the actions of the people that populate, consume, evaluate, and
value them. Any behavior that we might associate with property is a reflection of human
activity; real estate is the vessel for this activity.

We represent activity in and around real estate in our model by considering the inter-
face between households and properties in a hedonic fashion. Put succinctly, we consider
value (empirically) as a bundle of its attributes or characteristics. For example, real estate
price can be considered as a bundle of attribute prices assigned to its land footprint, the
external structure, floor–area ratio, location, and neighborhood externalities. Attribute
values are commonly referred to as an implicit price or a hedonic price, which leaves us
with a hedonic approach to determining overall price as a function of implicit prices (Hid-
ano, 2003; Rosen, 1974).
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The treatment of real estate price also warrants mention. In the real world, the price is
set by the household in conjunction with their realtor and in consideration of their expec-
tation of what the market will pay. Needless to say, this is quite difficult to model when
mapped to individual households in simulation. We approach price in a proxy manner,
with the assumption that price is driven by vacancy rates. This has justification in the the-
oretical literature (DiPasquale & Wheaton, 1996) and is popularly used in urban economic
models (Waddell, 2000). A vacancy adjustment function updates property value through
examination of market-level vacancy rates. In this sense, we have represented a very
abstract market mechanism that accounts for inequity between supply and demand.
2.3.5. Self-organization

Residential clusters are also understood to self-organize in space and time (Allen, 1997;
Krugman, 1996; Portugali, 2000). This is a by-product of how they are built: high-value
real estate tends to be constructed in agglomerations (Chicago’s Gold Coast, Phoenix’s
Paradise Valley, Beverly Hills in Los Angeles). Other aspects of real estate self-organiza-
tion relate to collective behavior, however. Socio-spatial segregation based on ethnicity is
an example (Schelling, 1978).

We are interested in gentrification as an example of self-organization. The nesting of
modeled entities allows for self-organization to propagate across scales and for phenom-
ena that emerge from micro-level interactions to be caught as novel forms at meso- and
macro-scales.

2.4. Model formulation

The model was implemented in NetLogo and constructed based on the aforementioned
design. Specifically, hedonic valuation, propensity for mobility, nested choice, accessibil-
ity, preference-based mediation of choice, and price adjustment are formulated as follows.

2.4.1. Hedonic valuation
Valuation of property is considered hedonically, such that

P j ¼ C þ
Xn

k¼1

V kQk ðiiÞ

Above, Pj refers to price of real estate unit j. k refers to attributes of that property bundle,
k = 1,2, . . . ,n. Vk represents the value of attributes k, while Qk represents the quantity of
attributes k. C is a constant.
2.4.2. Propensity for mobility

Likelihood of relocation is calculated as follows:

PbLij ¼ 1� PbCij ðiiiÞ

Above, PbLij describes the likelihood that household i will leave property j. PbCij indicates
how much household i prefers its property j, and (1 � PbLij) indicates how much a house-
hold does not prefer that property.
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2.4.3. Nested spatial choice

Spatial choice is formulated in the following manner.

PbCij ¼
X
ðbHE � H EÞ þ

X
ðbNE � N EÞ ðivÞ

Above, PbCij indicates the likelihood of household i choosing property j from a set of dis-
crete alternatives. bHE is a weighting for property; bNE is a weighting for markets. HE is a
set of property characteristics (a bundle of attributes); NE is a set of market characteristics.
Eq. (iv) can be expanded, and this illustrates the incorporation of preferences in the cal-
culation of likelihood of choice.

We can expand choice at the property level
P
ðbHE � H EÞð Þ.X

ðbHE � HEÞ ¼ b1ð1� jP Vj � ESijÞ þ b2ðH TSj � RPTSi þ HTCj � RPTCiÞ

þ b3ð1� jP Sj � RPSijÞ þ b4

X
ðAj � RPAiÞ ðvÞ

Eq. (v) includes factors relating to the alternative being evaluated, as well as characteristics
of the household doing the evaluating. Characteristics of the alternative are considered
hedonically, and are treated endogenously and exogenously.

The bm values in Eq. (v) are weights, used to increase or reduce the relative importance
of other factors on likelihood of choice. These weights are scaled across Eqs. (v) and (vii)
such that

P6
1bm ¼ 1. The weights should be interpreted as follows: coefficients for property

value suitability (b1), house type preference (b2), house size preference (b3), accessibility
preference (b4), neighborhood economic status (b5), and neighborhood ethnicity (b6).
Agent-specific characteristics are represented by economic status (ESi), and a series of
R-values that represent residents’ preferences for property characteristics (RPTSi: resident
i’s preference for single-family housing; RPTCi: resident i’s preference for condominiums;
RPSi: resident i’s property size preference; RPAi: resident i’s accessibility preference).
Endogenous characteristics include property price (PVj), property type (HTSj is a dummy
variable for house; HTCj is a dummy variable for condominium), and property size (PSj).
Aj is a variable for j’s accessibility.
2.4.4. The influence of accessibility

Exogenous factors enter into consideration through accessibility (Aj). Accessibility is trea-
ted in terms of access to four locations: downtown (ADT jÞ; the nearest highway entrance/exit
ramp (AHW jÞ; the nearest shopping mall (AMjÞ; and the nearest grocery store (AGjÞ.X

ðAj � RPAiÞ ¼ ðADT j � RPADT j þ AHW j � RPADHW j þ AMj � RPAMj þ AGj � RPAGjÞ;

where
X

RPAi ¼ 1 ðviÞ

Following McFadden (1974), we also consider characteristics of the household doing the
choosing: economic status of household i (ESiÞ.
2.4.5. Preference-mediated choice

The R-values in Eqs. (v) and (vi) are preferences. These act as a filter through which
decisions are made and they serve to tailor the decision calculation to independent house-
holds. These preferences are introduced at the level of the alternative being considered
(preference for houses (RPTSiÞ; condominiums (RPTCiÞ; and house size (RPSiÞÞ, as well as
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exogenously through accessibility (RPAi , decomposed to preferences for accessibility to
downtown (RDT iÞ, highways (RHW iÞ, shopping malls (RMiÞ, and grocery stores (RGiÞÞ.

We can also expand choice at the market-level
P
ðbNE � NEÞð Þ, such thatX

ðbNE � N EÞ ¼ b5ð1� jESMj � ESi jÞ þ b6 � ERi ðviiÞ

The b-values are weights, as before, but in this case they are used to weight market-level
conditions: market-wide economic status (b5) and ethnicity (b6). Taken together, the
weights across Eqs. (v) and (vii) sum to unity;

P6
1bm ¼ 1. The E-values are used to intro-

duce market-level attributes to households’ likelihood calculation: the median economic
status of the market that real estate unit j is associated with (ESMjÞ and market-level eth-
nicity (ERiÞ.

2.4.6. Price adjustment

Finally, the vacancy adjustment function for property price is formulated as follows:

P V ðt þ 1Þ ¼ P V ðtÞ �
1þ ab � V blðtÞ þ k � ð1þ ab � V blðtÞÞ

1þ k

� �b

ðviiiÞ

Above, PV(t + 1) represents the price of a real estate unit in time t + 1. This price is a func-
tion of a combination of its price in the previous time step t, the vacancy rate (Vbl(t)) for
space in real estate type b in location l at time t; the normal vacancy rate (ab) for real estate
type b; a scaling parameter for the property price adjustment (b), which is initially set to a
value of 1; and a parameter for weighting system-wide influence (k).

3. Applying the model to a real-world scenario

We applied this general behavioral model to a real-world example: the Gateway district
of Salt Lake City, Utah and its surroundings. The area encompasses a formerly under-
invested and largely industrial part of the city’s downtown (Fig. 5). The Gateway district
is subject to a long-term development plan to convert the former zone in transition to res-
idential and retail uses with a multi-mode transport hub several years into the future. The
core of this area is a former warehouse-dominated district that has fallen on hard times.
The surrounding area is dominated by residential uses: single-family and multiple-occu-
pancy residential and is home for an ethnically diverse minority of the downtown’s pop-
ulation, but has traditionally been under-funded. Visually, the area appears to be in early
stages of gentrification, with a newly burgeoning artist population, a fledgling graphic
design and new media industry, and planned loft-style, live-work-play, condominiums.
Gentrification is happening in the area; the main question that we would like to pose with
the model are what mechanisms are driving gentrification and what likely futures for the
area are on the horizon under different scenarios?

3.1. Dataware

The Gateway area plays host to some of Salt Lake City’s most dynamic urbanization.
Because of development plans, a wealth of data resources exists with which we can build
an application of our gentrification model. As is usually the case in these situations, we are
relatively data-rich with respect to some variables of interest, but data-poor with respect to



Fig. 5. Study area: Salt Lake City’s Gateway district.
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others. A list of data resources used to apply the model is presented in Table 2. A limited
set of property data are at parcel scale, suitable for direct inclusion in the model. However,
resident data are not at household scale; rather, they are available at regional scale. We
constructed a synthetic data population to reconcile the two (Bush, 2001). Household-level
data were estimated from higher-scale data, or assigned random values, in such a way that
the totals at micro-scales matched known totals at larger scales (Census blocks and
blockgroups).
3.2. Simulation assumptions

The simulation applied to the study area is based on some underlying assumptions.
First, we do not consider land-use transition. Second, we only consider owner-occupied
properties. Third, we make a distinction between single-family homes and condominiums



Table 2
Data resources

Data type Year Scale Resources

Property

Value ($) 2004 Parcel Salt Lake County Assessor’s office
Size (ft2) 2004 Parcel Salt Lake County Assessor’s office
Type 2004 Parcel Salt Lake County Assessor’s office
Location 2004 Parcel Salt Lake County

Road network 2000 1:100,000 The Census 2000 TIGER/Line data

Resident 2000 Census block The Census 2000 Summary File1
2000 Census block group The Census 2000 Summary File 3
1990 Census block group The Census 1990 Summary File 3
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in describing real estate types. Fourth, ethnicity is considered as Latino and non-Latino.
Fifth we use maximum utility as the threshold mechanism for choice.

The first four of these assumptions are due to data limitations, but also help with model
simplification. We consider only residential properties, and the process of land-use transi-
tion is eliminated as the main aim is not to represent land-use transitions but to represent
gentrification phenomena. Residents are characterized as either non-Latino or Latino
because these are the two major ethnicities in the study area.

3.3. Initial simulation conditions

Individual residents are initialized with an economic status that reflects the value of
their property, with some random perturbation (Table 3). Other characteristics (prefer-
ences, weights) are assigned randomly in the absence of survey data.
Table 3
Initial parameter settings for each scenario

Category Parameter Definition Scenario

1 2 3 4

Population GPOP Population growth 10 10 12 12
DPOP Population decrease 2 2 2 2

Residents NCELL Neighborhood cell 10 10 10 10

Property VRm1 Vacancy rate for Market 1 0.15 0.15 0.15 0.15
VRm2 Vacancy rate for Market 2 0.15 0.15 0.15 0.15
VRm3 Vacancy rate for Market 3 0.15 0.15 0.15 0.15

Vacancy adjustment
function

aS Normal vacancy rate for single
house unit

0.15 0.15 0.15 0.15

aC Normal vacancy rate for
condominium unit

0.15 0.15 0.15 0.15

B Scaling parameter 1.00 1.00 1.00 1.00
K Weight for regional and zonal

influence
0.025 0.025 0.025 0.025

Gentrifier Gnt Gentrifier parameter – 3.00 – 3.00



Fig. 6. Market boundaries and access points.
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We define three markets upon initializing the model. These markets are based on rea-
sonable delineation of property sub-markets for the area (Fig. 6). The markets have some
distinct attributes. All of Market 1 and most of Market 2 are occupied by single-family
housing units, although the market is divided (physically, socially, and economically),
by the city’s main railroad. By contrast, Market 3 is dominated by condominium units,
and is advertised as a work-live-play community. The northern markets (Markets 1 and
2) are physically separated from the south market (Market 3) by a buffer of office and civic
space. Markets 1 and 2 are also separated by a railroad. Socio-economic divisions are also
present. Market 1 is home to a majority Latino community, Market 3 is mostly non-
Latino in population, and Market 2 is mixed. Economically, Markets 1 and 2 are
lower-income markets and Market 3 is a relatively high-value-platform market.
4. Testing ideas in silico through simulation scenarios

We are interested in using the model to create synthetic, but realistic, laboratories for
testing ideas relating to gentrification dynamics. We have run the simulation under differ-
ent scenarios with this in mind. The goal is to test hypotheses about demand and supply
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factors of gentrification, to examine how gentrifiers and gentrifiable properties act as driv-
ers of gentrification dynamics, in isolation and in unison. Four scenarios are run.

Base simulation—The first scenario is the base simulation. This is a business-as-usual
scenario. The parameters for simulations run under this scenario are described in Table 3.
Population growth (GPOP) is assigned a value of 3%; the average monthly household
population growth from 1990 to 2000 is 3.217% in the study area. Other parameter values
are empirically assigned since sufficient data are not available.

Introducing potential gentrifiers—The second scenario considers demand-side factors of
gentrification theory. The scenario poses questions relating to the implications of potential
gentrifier inflow to the study area. This is animated in simulation by raising the economic
status of new residents.

Introducing potential gentrifiable properties—The third scenario considers supply-side
factors of gentrification theory. Under this scenario, new supply is introduced between
Markets 1 and 2 in the form of additional development (which we refer to as a new mar-
ket, Market 4).

A combined theory, gentrifiers and gentrifiable properties—Finally, the fourth scenario
considers both demand and supply-side theories. This scenario combines scenarios 1, 2,
and 3.

4.1. Results

The model is quite rich and a volume of results can be harvested from simulation runs.
In order to examine our hypotheses, we will first focus on space–time dynamics of gentri-
fication, relatively, across the four simulation scenarios. We detail dynamics in attribute-
space, specifically, thereafter, concentrating on property value and economic status as well
as ethnic mix and residential displacement.

4.1.1. Gentrification dynamics under the four simulation scenarios

The model was run for 500 simulation time steps under each scenario and area-wide
average values of total household, property value, economic status, original resident pro-
file, and non-Latino ethnicity profile were collected dynamically. It is assumed that one
simulation time step equals a month since the household population growth (GPOP) is
monthly growth; therefore, 500 simulation time steps correspond to approximately 40
years.

The geographical dynamics of the simulation under the demand–supply scenario is
depicted in Fig. 7; the temporal dynamics across all scenarios are illustrated in
Figs. 8–11. The supply-side scenario is not sufficient for explaining gentrification dynamics.
The same can be said of the demand-side scenario and the base simulation (business as
usual). Only the demand–supply scenario explains gentrification dynamics fully (Figs. 8–11).

The base scenario yielded some volatility across attribute-space over the course of the
simulation run. The three markets remained distinct nevertheless. Markets 1 and 2 shared
dominance as home to the majority of the area’s population at six time points in the sim-
ulation, while Market 3 remained distinct, housing a minority. There was no visible cor-
relation between these dynamics and transitions in other attributes. Property values were
quite dynamic. Affluent Market 3 appreciated markedly early in the simulation runs,
flattening-out thereafter. Growth in value was more steady in lower-income Markets 1
and 2. Market 2 actually eclipsed Market 3 in value for a brief period in the simulation.



Fig. 7. Geographical dynamics under the demand–supply scenario.
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Despite early tight-coupling, Markets 1 and 3 demonstrate almost reciprocal trends in
value throughout the remainder of the simulation, with booms in ‘‘yuppie’’ Market 3
shadowing busts in lower-income Market 1 and vice-versa. Economic statuses remained
stable over the simulation. Markets 1 and 2 stay lower-income, and Market 3 remains
as a higher-income community, regardless of property price fluctuations. Ethnically, the
markets remained distinct. Market 3 stayed non-Latino; Market 2 remained relatively
mixed; and Market 1 remained Latino. There was, however, a trend of growing divergence
between Markets 1 and 2. Market 1, in particular, grew more homogenously Latino as the
simulation progressed, while mixture in Market 2 increased slightly. The Latino popula-
tion never really gained entry to Market 3, even at times when property values dropped.
The simulation demonstrated a steady displacement of original residents over the course of
the simulation, across markets.

The status quo is maintained for the most part over the course of the simulation under
the demand-driven scenario. Whereas the base scenario was relatively mixed, the three real
estate markets tend to grow increasingly distinct and entrenched in their characterization



Fig. 8. Temporal dynamics under the base scenario.
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under the demand scenario. Market 2 retains the majority of the area’s population
throughout the simulation, as was the case on the base scenario. There is a great degree
of volatility in total household count, however. The range of fluctuation (±40) was the
greatest of all scenarios. Divergence across markets grew steadily over time. Separation



Fig. 9. Temporal dynamics under the demand scenario.

P.M. Torrens, A. Nara / Comput., Environ. and Urban Systems 31 (2007) 337–361 355
in property values across the markets is dramatic. ‘‘Yuppy’’ Market 3 diverges from lower-
income Markets 1 and 2 in appreciation very early in the simulation, growing increasingly
so until a period of bust toward the end of the simulation run. Market 2 appreciates rel-
atively slowly, with a high degree of volatility, while Market 2’s value stays flat throughout
the simulation. There is some reciprocity in the relationship between the fortunes of



Fig. 10. Temporal dynamics under the supply scenario.
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Markets 2 and 3, with bust trends in one mirroring boom trends in the other. Economic
status and property value did not seem closely tied in the base scenario, but they are tightly
coupled in the demand scenario. Economic status follows property value steadily across



Fig. 11. Temporal dynamics under the demand–supply scenario.
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markets and over the timeline of the simulation. There is a steady displacement of original
residents from Markets 1 and 3, but the trend is less dramatic in Market 2. Ethno-spatial
segregation is marked across markets, mimicking econo-spatial separation, but there is
little fluctuation in the degree of relative separation, despite the volatility in property
values.
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The supply-driven scenario produces amazing synchronicity across attribute-space.
Market 2 dominates in housing the majority of the area’s population, as before. The newly
added Market 4 absorbs only a small volume of the population and has almost no influ-
ence in drawing population away from the other markets. Property values are immediately
volatile in the simulation run, flattening-out to a slow but steady growth thereafter. The
newly introduced Market 4 has a competitive effect on ‘‘yuppy’’ Market 3. The real estate
fortunes of the four markets are very closely intertwined, however, following the same
boom and bust cycles after initial volatility early in the simulation. There are clear spatial
distinctions in the economic status of residents: Markets 3 and 4 remain relatively affluent,
while Markets 1 and 2 remain lower-income. This juxtaposition does not shift at all
through the simulation. The trend mimics that of the base scenario almost exactly, but
is slowly negative-tending, whereas that of the demand-driven scenario was strongly posi-
tive-tending. The decline in original residents is steady across markets, largely mimicking
that of the demand-driven scenario, but with less divergence. The rate of decline in original
residents is less dramatic than under the base scenario. Spatial separation remains marked
across markets. Newly formed Market 4 is overwhelmingly non-Latino in character, and
remains so over the simulation. Rates of change mimic those in the demand-driven sce-
nario, but are quite different from the base scenario.

The combined, demand- and supply-driven scenario closely resembles that of the base
scenario, across attribute-space. The rate of change in total household growth is relatively
volatile, with a range of ±20. Economic status grows steadily, with marked spatial sepa-
ration between ‘‘yuppy’’ Market 3 and lower-income Markets 1 and 2. Even as wealth
grows, the markets remain distinct rather than evening-out. Original residents are dis-
placed from all markets. Ethnically, Market 2 remains mixed, while Markets 1 and 3
remain homogenously Latino and non-Latino respectively. Newly formed Market 4 is
overwhelmingly non-Latino. There are some very interesting trends in property values,
however. Value grows across all markets, steadily and dramatically over the simulation
run. Condominium-dominated Market 3 shows marked volatility, but trends upward in
value.

4.1.2. Gentrification signatures in property value, economic status, ethnic profile, and resident

displacement dynamics

Property values are dynamic across all scenarios, both temporally and geographically.
Introduction of gentrifiers alone drives prices up, and remarkably so, in Market 3 (which is
dominated by condominium units that are marketed to young, up-and-coming, profes-
sionals) and this trend remains steadfast over time. The demand-side explains gentrifica-
tion dynamics partially. The introduction of new supply in isolation has a stabilizing
influence on price in the long-run, however. This is quite different to dynamics under
the demand-only scenario.

Only the combined demand–supply scenario explains gentrification dynamics in prop-
erty process successfully. The condominium-dominated market (Market 3) is elevated to a
distinct value-platform, but the long-term trend is for prices to climb across the urban
area. There is a spill-over, by diffusion of real estate price growth, into the formerly
under-invested Markets 1 and 2.

The business-as-usual scenario holds economic status relatively stable over time, which
is understandable. The introduction of new gentrifiers raises economic status markedly
and this is particularly evident in the market that is designed to cater to this resident
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profile. Market 2, which has been historically under-developed but enjoys all the benefits
of accessibility that Market 3 has, also plays host to a dramatic rise in economic status and
this creates spatial disconnect with neighboring Market 1. The introduction of supply
alone has a stabilizing influence, with the result that economic status remains steady.

Once again, only a combined supply and demand scenario is sufficient in explaining sys-
tem-wide economic response to gentrification. The economic geography of the urban area
takes on some interesting characteristics under the demand–supply scenario. The introduc-
tion of a new market between Markets 2 and 3 provides an economic bridge between
otherwise economically distinct clusters of real estate and a supply of gentrifiers to caravan
the pattern between the two. The gentrification dynamics affect property values; they also
impact the population.

The results for ethnic profile were less dramatic. The business-as-usual scenario main-
tains the status quo for ethnic profile over the urban area. Influx of potential gentrifiers
has a stabilizing influence. The introduction of property supply alone did little to alter
the balance. The demand–supply scenario did maintain a division on ethnic lines, however.

The influence on ethnic mix is less dramatic, largely because we do not have data for eth-
nicity of the 3% cohort of new population supply. Tilting the mix would likely produce dra-
matically different dynamics, but without a solid basis for tilting the parameters one way or
another, the influence remains artifactual. We did, however, observe marked geographic
dynamics. As with the economic influence of the demand–supply scenario, the introduction
of new supply and new gentrifiers in Market 4 established a connection between Markets 3
and 4, which otherwise demonstrate socio-spatial segregation along ethnic lines.

Over time, the proportion of original residents remaining across markets (from time
t = 1 to time t = 500) declines, as it should, under the business-as-usual scenario. This
decline is accelerated under the introduction of new residents in the demand scenario,
but remains steady under the other scenarios. Geographically, the supply and demand–
supply scenarios produce some interesting results. The process of displacing original res-
idents in Market 1 accelerates dramatically under the introduction of Market 4.

5. Conclusions

Gentrification, a term that was first coined by Ruth Glass in 1964, has been widely dis-
cussed in the field of urban geography. This literature base largely focuses on theoretical
issues relating to causes and consequences of gentrification. There has, by contrast, been
relatively little research into testing these ideas in simulation, despite the advantages that
simulation can offer as a synthetic test-bed for hypotheses that are not easily explored on
the ground.

The modeling methodology employed in this work makes use of cell-like and agent-like
automata, which allows the descriptive and explorative process to be focused on property-
and resident-specific hypotheses. It also allows for scaling of gentrification dynamics
across micro- and macro-levels in an intuitive and seamless manner, with the advantage
that the novelty of a complex adaptive systems approach can be employed.

The simulation results demonstrate that the model is adequate to capture theoretical
dynamics of gentrification and is powerful enough to allow for hypothesis-testing and
scenario-evaluation across a wide variety of considerations.

Although it is only verified on a theoretical level, our model demonstrates the potential of
this type of analysis as a springboard to explore more sophisticated models of gentrification,
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perhaps with a longer research agenda of supporting decision-making for policy-makers,
urban planners, developers, and residents.

We regard the work as successful in terms of its immediate goals. There is room for
improvement, however. One of the key issues is that it is necessary to gather micro-scale
data before applying the model in the context of real urban dynamics, as well as for model
validation and determination of appropriate simulation time and scale.

Further exploration into more of the mechanisms of gentrification, residential mobility,
and property upgrading is another future research direction. In our approach, the phe-
nomenon of gentrification is understood in terms of demand- and supply-side theories,
and this concept is implemented in simulation scenarios by simply introducing gentrifiers
and gentrifiable properties. However, gentrification in the real world is much more com-
plex in its urban dynamics. For example, top-down concepts such as issues of urban plan-
ning and political zoning should be taken into consideration, while this study focused on
bottom-up approaches. Other, less tangible, factors are likely important but are incredibly
difficult to model: social biases, cultural factors, etc. In terms of the mechanism of residen-
tial mobility, this work used a utility function, which is derived from the idea of a hedonic
approach, and residential mobility is determined by six variables. It is important to empir-
ically determine the significant variables for housing choice behaviors. Which variables are
critical and relevant components for housing choice behavior in the utility function, for
example? This could be settled empirically by statistical methods ahead of model parama-
terization, but this is difficult in the absence of real micro-scale survey data. Nevertheless,
we regard our model as a step in the right direction, ahead of examining these issues in
future work.
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